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We investigate two-fluid Bhatnagar-Gross-Krook �BGK� kinetic methods for binary fluids. The developed
theory works for asymmetric as well as symmetric systems. For symmetric systems it recovers Sirovich’s
theory and is summarized in models A and B. For asymmetric systems it contributes models C, D, and E which
are especially useful when the total masses and/or local temperatures of the two components are greatly
different. The kinetic models are discretized based on an octagonal discrete velocity model. The discrete-
velocity kinetic models and the continuous ones are required to describe the same hydrodynamic equations.
The combination of a discrete-velocity kinetic model and an appropriate finite-difference scheme composes a
finite-difference lattice Boltzmann method. The validity of the formulated methods is verified by investigating
�i� uniform relaxation processes, �ii� isothermal Couette flow, and �iii� diffusion behavior.
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I. INTRODUCTION

Gas kinetic theory plays a fundamental role in under-
standing many complex processes. To make solutions pos-
sible, many of the kinetic models for gases are based on the
linearized Boltzmann equation, especially based on the BGK
approximation �1,2�. As a kinetically inspired mesoscopic
numerical approach, the lattice Boltzmann method �LBM�
has been becoming a viable and promising scheme for simu-
lating fluid flows �3�.

LBMs for single-component fluids have been well stud-
ied, while for binary mixtures they still need more clarifica-
tion �4�. For binary fluids, although various LBMs have been
proposed �5–22�, most of them �8–19� are based on the one-
fluid theory �23�. For systems with different component
properties, a two-fluid theory is necessary. Sirovich’s two-
fluid kinetic theory �24� works for �approximately� symmet-
ric systems where the two components have �approximately�
the same total masses and local temperatures. A LBM based
on Sirovich’s theory and for the complete two-dimensional
Navier-Stokes equations�NSE� is given in �22�. This LBM is
based on a two-dimenaional model with sixty-one discrete
velocities �D2V61�. Many compressible fluids can be well
described by the Euler equations �25�. In fluid mechamics of
low-speed flow, the temperature remains nearly constant and
consequently the isothermal NSE description is extensively
used �25�. From the Chapman-Enskog procedure �26� the
Euler equation is a lower-order approximation compared
with the NSE. The isothermal NSE is a simplified case of the
complete NSE. For the above two kinds of systems, using
the LBM for complete NSE system is not neccessary and
computationally inefficient. In this study we generalize
Sirovich’s theory so that it works also for asymmetric sys-
tems where the total masses and/or local temperatures of the
two components are greatly different, then formulate LBMs
for the two kinds of systems. The LBMs formulated here
require simpler discrete velocity models�DVMs�. For the
Euler-equation system a DVM with thirty-three discrete ve-
locities �D2V33� is enough. For the isothermal NSE system,
a D2V25 is sufficient.

This paper is arranged in the following way: In Sec. II we
review and develop the two-fluid BGK kinetic theory. Sirov-

ich’s original treatments are clarified and summarized in
models A and B. For asymmetric systems three kinetic mod-
els �C, D and E� are derived. The hydrodynamics and diffu-
sion behavior of the model systems are discussed. In Sec. III
the kinetic models are discretized based on a multispeed dis-
crete velocity model. Then, possible FD schemes are given
and the corresponding numerical viscosities and diffusivities
are analyzed. Numerical tests are shown in Sec. IV. Section
V concludes the present paper.

II. TWO-FLUID BGK KINETIC THEORY

In a binary system with two components, A and B,
roughly speaking, the approach to equilibrium can be divided
into two processes. One is referred to as Maxwellization �i.e.,
each species equilibrates within itself so that the local distri-
bution function approaches to its local Maxwellian�. The
other is the equilibration of species �i.e., the differences in
hydrodynamic velocities and local temperatures of the two
components eventually vanish�. Correspondingly, the inter-
particle collisions fall into two categories: self-collisions
�collisions within the same species� and cross-collisions �col-
lisions between different species� �5,24�.

A. General description

For a two-dimensional binary gas system the BGK kinetic
equations read �5�

�t f
A + vA ·

�

�r
fA + aA ·

�

�vA fA = JAA + JAB, �1�

�t f
B + vB ·

�

�r
fB + aB ·

�

�vB fB = JBB + JBA, �2�

where

JAA = −
1

�AA �fA − fA�0��, JAB = −
1

�AB �fA − fAB�0�� , �3�

fA�0� =
nA

2��A exp�−
�vA − uA�2

2�A � , �4�

PHYSICAL REVIEW E 71, 066706 �2005�

1539-3755/2005/71�6�/066706�12�/$23.00 ©2005 The American Physical Society066706-1



fAB�0� =
nA

2��AB exp�−
�vA − u�2

2�AB � , �5�

�A =
kBTA

mA , �AB =
kBT

mA . �6�

fA �fB� and vA �vB� are the distribution function and particle
velocity of the component A �B�; fA�0� and fAB�0� are the local
Maxwellians which work as references for the self- and
cross-collisions; nA, uA, TA are the local number density, hy-
drodynamic velocity and temperature of the species A; u, T
are the local hydrodynamic velocity and temperature of the
mixture after equilibration process; aA is the acceleration of
the species A due to the effective external field. For species
A, we have

nA =� dvAfA, �7�

nAuA =� dvAvAfA, �8�

nAkBTA =� dvA1

2
mA�vA − uA�2fA, �9�

�A = nAmA, �10�

eint
A �P0

A� = nAkBTA, �11�

where �A and eint
A �P0

A� are the local mass density and internal
mean kinetic energy �hydrostatic pressure� of species A, kB is
the Boltzmann constant. For species B, we have similar re-
lations.

For the mixture, we have

n = nA + nB, � = �A + �B, �12�

u =
�AuA + �BuB

�
, �13�

nkBT =� dvA1

2
�vA − u�2mAfA +� dvB1

2
�vB − u�2mBfB,

�14�

eint�P0� = nkBT , �15�

where n, �, u, T, eint, P0 are the total number density, total
mass density, barycentric velocity, mean temperature, total
internal energy, and total hydrostatic pressure, respectively. It
is easy to find the following relations:

T =
1

n
�nATA + nBTB� +

�A�B

2nkB�
�uA − uB�2, �16�

P0 = P0
A + P0

B +
�A�B

2�
�uA − uB�2. �17�

Here three sets of hydrodynamic quantities ���A ,uA ,TA�,
��B ,uB ,TB� and �� ,u ,T�� are involved. If one assumes that

the two components are in local equilibrium, implying that
TA, TB, T can be replaced by T�0� and uA, uB, u can be
replaced by u�0� in the definitions of fA�0�, fB�0� and fAB�0�, we
arrive at the one-fluid theory and Eq. �17� recovers Dalton’s
law �25�, where T�0� and u�0� are the temperature and the
velocity of the system in the complete equilibrium. It is clear
that the one-fluid theory is conditionally valid. If the differ-
ences among TA, TB, T and/or among uA, uB, u are not small,
the above replacements result in large errors. Since each set
of the hydrodynamic quantities can be described by the other
two sets, in such cases, a two-fluid theory is preferable.
Without loss of generality, we require the description to be
dependent on ��A ,uA ,TA� and ��B ,uB ,TB� �27�.

A key point to complete the two-fluid kinetic description
is how to calculate the local Maxwellian fAB�0� �fBA�0��.
Within Sirovich’s original treatments, it is Taylor expanded
around fA�0� �fB�0�� to the first order of flow velocity and
temperature �24�. This treatment is reasonable when the hy-
drodynamic properties of the two components are nearly
symmetric, i.e., �u−uA�	�u−uB�, �T−TA�	�T−TB�. To make
a general theory working also for asymmetric systems where
the hydrodynamic properties of the two components are
greatly different, we introduce the reference distribution
function in a general way and do the Taylor expansion
around it.

For fAB�0�, we choose the reference distribution function
gA�0� as

gA�0� =
nA

2��Ar exp�−
�vA − uAr�2

2�Ar � , �18�

where the second superscript “r” means “reference” and the
corresponding quantities are the reference hydrodynamic
quantities which take values in the following way:

�Ar =
kBTAr

mA , �19�

uAr = 
uA �if �u − uA� � �u − uB�� ,

uB �if �u − uA� � �u − uB�� ,
� �20�

TAr = 
TA �if �T − TA� � �T − TB�� ,

TB �if �T − TA� � �T − TB�� .
� �21�

Let us make the solutions more explicit. First for u, from Eq.
�13� we have

�u − uA

u − uB� =
�B

�A =
nBmB

nAmA . �22�

Then for T, from Eq. �16�, when TA�TB we have

�T − TA

T − TB� = 

�B�A

2nkB�
�uB − uA�2 −

nB

n
�TA − TB�

�B�A

2nkB�
�uB − uA�2 +

nA

n
�TA − TB�
 � 1.

�23�

When TA�TB we have
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�T − TA

T − TB� = 

�B�A

2nkB�
�uB − uA�2 +

nB

n
�TB − TA�

�B�A

2nkB�
�uB − uA�2 −

nA

n
�TB − TA�
 � 1.

�24�

Considering together �20�, �23�, and �24� gives

uAr = 
uA �if �A 	 �B� ,

uB �if �A � �B� ,
� �25�

TAr = 
TA �if TA 	 TB� ,

TB �if TA � TB� .
� �26�

In the case of uAr=uA and TAr=TA, gA�0� gets back to fA�0�.
Both of �A and TA are local quantities. Their values are

functions of position and time. It is possible for such a phe-
nomenon, �A�r1 , t���B�r1 , t� but �A�r2 , t���B�r2 , t�, to oc-
cur, where r1 and r2 are two different positions in the system.
While in a theory it is not convenient to use the reference
state in such a way: uAr�r1 , t�=uA�r1 , t� and uAr�r2 , t�
=uB�r2 , t�. Instead, we prefer to use one of the two possibili-
ties, uAr�r , t�=uA�r , t� or uAr�r , t�=uB�r , t�, in the whole sys-
tem, where r is an arbitrary position in the system. For TAr

we have the same preference. To that aim, �A,�B,TA and TB in
the criteria �25� and �26� are replaced by their spacially av-

eraged values, �̄A, �̄B, T̄A, and T̄B, respectively. This treat-
ment is reasonable from a statistical sense.

B. Kinetic models for symmetric systems

For systems with �̄A	 �̄B and T̄A	 T̄B, we can use gA�0�

= fA�0�, gB�0�= fB�0�, i.e., Sirovich’s kinetic theory. In this case
the equations for the two components are symmetric. The
cross-collision term in �1� becomes

JAB = −
1

�AB �fA − fA�0�� −
fA�0�

�A 

D
A�vA − uA� · �uA − uB�

+ 
T
A� �vA − uA�2

2�A − 1��TA − TB� − MA� �vA − uA�2

2�A − 1�
��uA − uB�2� , �27�

where


D
A =

�B

�AB�
, 
T

A =
kBnB

�ABnmA , MA =
nA�B

2�ABn�
. �28�

If we concern the hydrodynamics only up to the NSE level,
fA �fB� in the force term can be replaced by fA�0� �fB�0��. The
BGK model �1�–�6� can be rewritten as

�t f
A + vA ·

�

�r
fA − aA ·

�vA − uA�
�A fA�0� = QAA + QAB, �29�

�t f
B + vB ·

�

�r
fB − aB ·

�vB − uB�
�B fB�0� = QBB + QBA, �30�

where

QAA = −
1

�A �fA − fA�0��,
1

�A =
1

�AA +
1

�AB , �31�

QAB = −
fA�0�

�A 

D
A�vA − uA� · �uA − uB� + 
T

A� �vA − uA�2

2�A − 1�
��TA − TB� − MA� �vA − uA�2

2�A − 1��uA − uB�2� . �32�

The expressions of QBB and QBA are obtained from Eqs. �31�
and �32� via formal replacements of the superscripts A and B.
In the isothermal case, TA=TB=T, the expression of QAB is
simplified as

QAB = −
fA�0�

�A 
D
A�vA − uA� · �uA − uB� . �33�

For the convenience of description, the kinetic model with
�29�–�32� is referred to as kinetic model A; the one with
�29�–�31� and �33� is referred to as kinetic model B.

C. Kinetic models for asymmetric systems

1. Kinetic model C: for isothermal systems with �̄A� �̄B

For such a system, gA�0�= fA�0�, and

gB�0� =
�B

2�kBT
exp�−

mB�vB − uA�2

2kBT
� , �34�

fBA�0� = gB�0� + gB�0�� mB

kBT
��vB − uA� · �u − uA�

= gB�0��1 +
�B

�

�vB − uA�
�B · �uB − uA�� . �35�

Thus, within kinetic model C,

QAA = −
1

�A �fA − fA�0�� , �36�

QBB = −
1

�BB �fB − fB�0�� −
1

�BA �fB − gB�0�� , �37�

QAB = −
fA�0�

�A 
D
A�vA − uA� · �uA − uB� , �38�

QBA = −
gB�0�

�B 
D
B��vB − uA� · �uA − uB� , �39�

where


D
B� =

�B

�BA�
. �40�

2. Kinetic model D: for systems with �̄A� �̄B and T̄A� T̄B

The references are gA�0�= fA�0� and

gB�0� =
�B

2�kBTA exp�−
mB�vB − uA�2

2kBTA � . �41�

Since

FINITE-DIFFERENCE LATTICE BOLTZMANN METHODS … PHYSICAL REVIEW E 71, 066706 �2005�

066706-3



fBA�0� = gB�0�
1 +
�B

�

�vB − uA�
�Br · �uB − uA� + � �vB − uA�2

2�BrTA

−
1

TA��nB

n
�TB − TA� +

�B�A

2nkB�
�uB − uA�2�� , �42�

within kinetic model D

QAA = −
1

�A �fA − fA�0�� , �43�

QBB = −
1

�BB �fB − fB�0�� −
1

�BA �fB − gB�0�� , �44�

QAB = −
fA�0�

�A 

D
A�vA − uA� · �uA − uB� + 
T

A� �vA − uA�2

2�A − 1�
��TA − TB� − MA� �vA − uA�2

2�A − 1��uA − uB�2� , �45�

QBA = −
gB�0�

�Br 

D
B��vB − uA� · �uA − uB� + 
T

B�

�� �vB − uA�2

2�Br − 1��TA − TB� − MB

�� �vB − uA�2

2�Br − 1��uB − uA�2� , �46�

where


T
B� = kB

nB

�BAmBn
. �47�

3. Kinetic model E: for systems with �̄A� �̄B and T̄A� T̄B

In this case, the reference velocity and reference tempera-
ture for both fAB�0� and fBA�0� are uA and TB, respectively.

gA�0� =
�A

2�kBTB exp�−
mA�vA − uA�2

2kBTB � , �48�

gB�0� =
�B

2�kBTB exp�−
mB�vB − uA�2

2kBTB � . �49�

Within the kinetic model E

QAA = −
1

�AA �fA − fA�0�� −
1

�AB �fA − gA�0�� , �50�

QBB = −
1

�BB �fB − fB�0�� −
1

�BA �fB − gB�0�� , �51�

QAB = −
gA�0�

�Ar 

D
A�vA − uA� · �uA − uB� +

kBnA

�ABnmA

�� �vA − uA�2

2�Ar − 1��TB − TA� − MA

�� �vA − uA�2

2�Ar − 1��uA − uB�2� , �52�

QBA = −
gB�0�

�B 

D
B��vB − uA� · �uA − uB�

+
kBnA

�BAnmB� �vB − uA�2

2�B − 1��TB − TA�

− MB� �vB − uA�2

2�B − 1��uB − uA�2� . �53�

D. Hydrodynamics and diffusion

1. Hydrodynamics

A connection between a kinetic model and corresponding
hydrodynamics is the Chapman-Enskog analysis �26�. All
above kinetic models contribute to �i� the same continuity
equation at the Euler and the NSE levels,

��A

�t
+

�

�r�

��Au�
A� = 0, �54�

��B

�t
+

�

�r�

��Bu�
B� = 0, �55�

�ii� the same Euler momentum equations,

�

�t
��Au�

A� +
�

�r


��Au�
Au


A� +
�P0

A

�r�

− �Aa�
A +

j�
AB

�AB = 0, �56�

�

�t
��Bu�

B� +
�

�r


��Bu�
Bu


B� +
�P0

B

�r�

− �Ba�
B +

j�
BA

�BA = 0 �57�

and �iii� the same NSE momentum equation for component
A,

�

�t
��Au�

A� +
�

�r


��Au�
Au


A� +
�P�


A

�r


− �Aa�
A +

j�
AB

�AB = 0, �58�

where

j�
AB = − j�

BA =
�A�B

�
�u�

A − u�
B� �59�

describes the momentum transferred from component A to B,
and it is also the diffusion flux density which will be clear
from a later equation �72�;

P�

A = P0

A��
 − ��

A �60�

is the stress tensor,

��

A = �A� �u�

A

�r


+
�u


A

�r�

−
�u�

A

�r�

��
� �61�

is the viscous stress tensor, and

�A = P0
A�A �62�

is the viscosity.
Models A and B contributes to symmetric hydrodynamics

for the two components. The Euler energy equation of model
A for component A reads
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�eA

�t
+

�

�r�

��eA + P0
A�u�

A� − �Aa�
Au�

A +
1

�AB�u�
Aj�

AB + qAB

−
nA�

2n�A�B j�
ABj�

AB� = 0, �63�

where

eA = eint
A +

1

2
�A�uA�2 �64�

is the local total energy, and

qAB =
nAnB

n
kB�TA − TB� �65�

is the heat transfered from component A to B.
The NSE momentum equation for component B from

model C reads

�

�t
��Bu�

B� +
�

�r


��Bu�
Bu


B� +
��P�


B + �̃�

B �

�r


− �Ba�
B +

j�
BA

�BA = 0,

�66�

where the definition of P�

B is similar to that of P�


A , and

�̃�

B = −

�B�B��B − �A�
�BA�

��u�
B − u�

A��u

B − u


A�� �67�

is an additional stress tensor due to the asymmetry of densi-
ties of the two components.

The Euler energy equation of model D for component A is
the same as Eq. �63� and for component B reads

�eB

�t
+

�

�r�

��eB + P0
B�u�

B� − �Ba�
Bu�

B +
1

�BA
�B

2
�u�

Bu�
B − u�

Au�
A�

+
��B�2

�
�u�

Au�
A − u�

Au�
B� + qBA −

nA�

2n�A�B j�
BAj�

BA� = 0,

�68�

where the definition of eB is similar to that of eA and

qBA = − qAB.

The Euler energy equations from kinetic model E are as fol-
lows:

�eA

�t
+

�

�r�

��eA + P0
A�u�

A� − �Aa�
Au�

A +
1

�AB�u�
Aj�

AB + qAB

−
nA�

2n�A�B j�
ABj�

AB� = 0, �69�

�eB

�t
+

�

�r�

��eB + P0
B�u�

B� − �Ba�
Bu�

B +
1

�BA��B

2
�u�

Bu�
B − u�

Au�
A�

+
��B�2

�
�u�

Au�
A − u�

Au�
B� + qBA −

nA�

2n�A�B j�
BAj�

BA� = 0.

�70�

2. Diffusion

From the continuity equations �54� and �55� we have

��

�t
+

�

�r�

��u�� = 0 �71�

and

��A

�t
+

�

�r�

��Au�� = −
�j�

AB

�r�

, �72�

where j�
AB is given in Eq. �59� and it is the amount of the

component A transported relative to the component B by
diffusion through unit area in unit time. For the incompress-
ible fluids where � is a constant, the continuity equation �72�
is equivalent to the following diffusion-convection equation,

��

�t
+

�

�r�

��u�� = −
�

�r�

���1 − ���u�
A − u�

B�� , �73�

where �=�A /�. The diffusion velocity �u�
A−u�

B� is deter-
mined by the momentum equation. We can find a simple
relation for it in the following case: We consider a binary
system without external forces and where the flow velocities
u�

A, u�
B are small and their derivatives can be regarded as

higher-order small quantities. From the momentum Eq. �56�
or �58�, by neglecting the second and higher-order terms in
u�

A and/or u�
B, then using the definition �11�, we obtain

u�
A − u�

B = −
��AB

�A�B

�P0
A

�r�

�74�

=−
kB�AB�TA

�A�B

�nA

�r�

−
kB�AB�

mA�B

�TA

�r�

. �75�

If further assume the system to be isothermal, the density
flux of component A reads

j�
A = �A�u�

A − u�� = − DA��A

�r�

, �76�

where

DA =
kBT�AB

mA �77�

is the diffusivity of component A. Eqation �76� is Fick’s first
law �28�. From Eqs. �73� and �75� we have

��

�t
+

�

�r�

��u�� =
�

�r�
�DA ��

�r�
� . �78�

In the case where the barycentric velocity field is zero and
�AB is a constant, the diffusion-convection equation �78� re-
duces to Fick’s second law �28�,

��

�t
= DA �

�r�

��

�r�

. �79�

Under the present treatment cross-collisions contribute to
the viscous behavior and are responsible for the interdiffu-
sion as well as momentum and heat exchanges between the
two components. The momentum and heat exchanges be-
tween the two components occur not only at the Navier-
Stokes level but also at the Euler level �29�, which is
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different from the case in the one-fluid theory �18,25�, but
consistent with the two-fluid relations �16� and �17�.

III. DISCRETE KINETIC MODELS

A. General description

Based on the following discrete velocity model,

v0 = 0, vki = vk�cos� i�

4
�,sin� i�

4
��, i = 1,2, . . . ,8,

�80�

the kinetic equations read

�fki
A

�t
+ vki�

A �fki
A

�r�

− aA ·
�vki

A − uA�
�A fki

A�0� = Qki
AA + Qki

AB, �81�

�fki
B

�t
+ vki�

B �fki
B

�r�

− aB ·
�vki

B − uB�
�B fki

B�0� = Qki
BB + Qki

BA, �82�

where subscript k indicates the kth group of particle veloci-
ties and i indicates the direction of the particle speed. The
DVM �80� is isotropic up to its seventh rank tensors �30�.
The discrete kinetic model, �81� and �82�, is required to re-
cover the same hydrodynamic equations as those of its con-
tinuous version. This requirement is used to formulate the
multispeed-discrete-velocity kinetic models.

B. Models for isothermal and compressible Navier-Stokes
equations

1. Discrete-velocity kinetic model B

Due to the symmetry of the two components, we show
results only for the component A,

Qki
AA = −

1

�A �fki
A − fki

A�0�� , �83�

Qki
AB = −

fki
A�0�

�A 
D
A�vki

A − uA� · �uA − uB� , �84�

fki
A�0� = nA� mA

2�kBTA�exp�−
mA�vki

A − uA�2

2kBTA � . �85�

The Chapman-Enskog analysis shows that, to get the isother-
mal NSE equations, �54� and �58�, the following require-
ments on the discrete equilibrium distribution function,

�
ki

fki
A�0� = nA, �86�

�
ki

vki
A fki

A�0� = nAuA, �87�

�
ki

mAvki�
A vki


A fki
A�0� = P0

A��
 + �Au�
Au


A, �88�

�
ki

mAvki�
A vki


A vki�
A fki

A�0� = P0
A�u�

A��
 + u�
A�
� + u


A����

+ �Au�
Au


Au�
A, �89�

are necessary and also sufficient.
The requirement �89� contains the third order of the flow

velocity uA. So it is reasonable to expand fki
A�0� in the poly-

nomial form to the third order in the flow velocity,

fki
A�0� = nAFk

A
�1 −
�uA�2

2�A � +
1

�A�1 −
�uA�2

2�A �vki�
A u�

A

+
1

2��A�2vki�
A vki�

A u�
Au�

A +
1

6��A�3vki�
A vki�

A vki�
A u�

Au�
Au�

A�
+ ¯ , �90�

where

Fk
A =

1

2��A exp�−
�vk

A�2

2�A � . �91�

The left-hand side of Eq. �89� with the truncated fki
A�0� has

sixth rank tensor in particle velocity vA. Therefore, to recover
the correct hydrodynamical equations, the based DVM
should be isotropic up to its sixth rank tensor. DVM �80�
satisfies the need.

To satisfy �86�, we require

�
ki

Fk
A = 1, �92�

�
ki

Fk
Avki�

A vki�
A u�

Au�
A = �A�uA�2, �93�

To satisfy �87�, we require

�
ki

Fk
Avki�

A vki�
A u�

A = �Au�
A, �94�

�
ki

Fk
Avki�

A vki�
A vki�

A vki�
A u�

Au�
Au�

A = 3��A�2�uA�2u�
A. �95�

To satisfy �88�, we require

�
ki

Fk
Avki�

A vki

A = �A��
, �96�

�
ki

Fk
Avki�

A vki

A vki�

A vki�
A u�

Au�
A = ��A�2��uA�2��
 + 2u�

Au

A� .

�97�

To satisfy �89�, we require

�
ki

Fk
Avki�

A vki

A vki�

A vki�
A u� = ��A�2�u�

A�
� + u

A��� + u�

A��
� ,

�98�

�
ki

Fk
Avki�

A vki

A vki�

A vki�
A vki�

A vki�
A u�

Au�
Au�

A

= 3��A�3�uA�2�u�
A�
� + u


A��� + u�
A��
� + 6��A�3u�

Au

Au�

A.

�99�
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If we further consider the isotropic properties of the dis-
crete velocity model, the above 8 requirements reduce to the
following four ones. Requirement �92� gives

�
ki

Fk
A = 1. �100�

Requirements �93�, �94�, and �96� give

�
k

Fk
A�vk

A�2 =
�A

4
. �101�

Requirements �95�, �97�, and �98� give

�
k

Fk
A�vk

A�4 = ��A�2. �102�

Requirement �99� give

�
k

Fk
A�vk

A�6 = 6��A�3. �103�

To satisfy the above four requirements, four different particle
velocities are sufficient. We choose a zero speed, v0

A=0, and
other three nonzero ones, vk

A �k=1,2 ,3�. From �101�–�103� it
is easy to find the following solution,

Fk
A =

�k
A

�k
A , �104�

�k
A = �A��vk+1

A vk+2
A �2 − 4�A��vk+1

A �2 + �vk+2
A �2� + 24��A�2� ,

�105�

�k
A = 4�vk

A�2��vk+1
A vk+2

A �2 − �vk
A�2��vk+1

A �2 + �vk+2
A �2� + �vk

A�4� ,

�106�

where k=1,2 ,3 and v4
A=v1

A, v5
A=v2

A. From �100� we get

F0
A = 1 − 8�

k=1

3

Fk
A. �107�

2. Discrete-velocity kinetic model C

The description for component A is the same as that in
discrete-velocity kinetic model B. For component B,

Qki
BB = −

1

�BB �fki
B − fki

B�0�� −
1

�BA �fki
B − gki

B�0�� , �108�

Qki
BA = −

gki
B�0�

�B 
D
B��vki

B − uA� · �uA − uB� . �109�

fki
A�0� and fki

B�0� are formulated in the same as those in discrete
model B. Additionally, gki

B�0� should be formulated in a simi-
lar way. Due to similar reasons, gki

B�0� is expanded as

gki
B�0� = nBGk

B
�1 −
�uA�2

2�B � +
1

�B�1 −
�uA�2

2�B �vki�
B u�

A

+
1

2��B�2vki�
B vki�

B u�
Au�

A +
1

6��B�3vki�
B vki�

B vki�
B u�

Au�
Au�

A�
+ ¯ , �110�

where

Gk
B =

1

2��B exp�−
�vk

B�2

2�B � . �111�

The formulas for Gk
B can be obtained through formal replace-

ments in Eqs. �104�–�107�: �A→�B=kBT /mB, Fk
A→Gk

B.

C. Models for the complete Euler equations

LBMs for single-component Euler equation have been
constructed by several authors. �See Yan et al. �31� and
Kataoka et al. �32� for examples.� In this section we formu-
late the discrete-velocity kinetic models A, D and E for the
complete Euler equations of binary fluids.

1. Discrete-velocity kinetic model A

The equations for component A are the same as Eqs. �83�
and �85� with

Qki
AB = −

fki
A�0�

�A 

D
A�vki

A − uA� · �uA − uB� + 
T
A� �vki

A − uA�2

2�A − 1�
��TA − TB� − MA� �vki

A − uA�2

2�A − 1��uA − uB�2� . �112�

The Chapman-Enskog analysis �26� shows that, to recover
the same Euler equations �54�, �56�, and �63�, besides
�86�–�89�, one more requirement

�
ki

1

2
mA�vk

A�2vki�
A vki


A fki
A�0�

= 2P0
A�A��
 +

P0
A

2
�uA�2��
 + 3PAu�

Au

A +

1

2
�A�uA�2u�

Au

A

�113�

is necessary. Correspondingly, fki
A�0� should be Taylor ex-

panded to the fourth order of flow velocity, the DVM should
be isotropic up to its seventh rank tensor. Again, DVM �80�
satisfies the need. To satisfy �113�, we require

�
ki

Fk
A �vk

A�2

2
vki�

A vki

A = 2��A�2��
, �114�

�
ki

Fk
A �vk

A�2

2
vki�

A vki

A vki�

A vki�
A u�

Au�
A = 3��A�3��uA�2��
 + 2u�

Au

A� ,

�115�
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�
ki

Fk
A �vk

A�2

2
vki�

A vki

A vki�

A vki�
A vki�

A vki�
A u�

Au�
Au�

Au�
A = 12��A�4

���uA�4��
 + 4�uA�2u�
Au


A� . �116�

Finally, we have five requirements on Fk
A. Four are shown in

Eqs. �100�–�103� and the fifth is

�
k

Fk
A�vk

A�8 = 48��A�4. �117�

To satisfy the above five requirements, five particle velocities
are sufficient. We choose a zero speed, v0

A=0, and other four
nonzero ones, vk

A �k=1,2 ,3 ,4�. It is easy to find the follow-
ing solution,

F0
A = 1 − 8�

k=1

4

Fk
A, �118�

Fk
A =

�k
A

�k
A , �119�

where

�k
A = 192��A�4 − 24��A�3�

j=1

3

�vk+j
A �2 + 4��A�2�

j=1

3

�vk+j
A vk+j+1

A �2

− �A� j=1
3 �vk+j

A �2, �120�

�k
A = 4�vk

A�2� j=1
3 ��vk

A�2 − �vk+j
A �2� , �121�

k=1,2 ,3 ,4, and v4+j
A =v j

A �j=1,2 ,3�. For component B we
have similar results.

2. Discrete-velocity kinetic model D

The equations for component A are the same as those of
model A and for component B are as follows:

QBB = −
1

�BB �fki
B − fki

B�0�� −
1

�BA �fki
B − gki

B�0�� , �122�

Qki
BA = −

gki
B�0�

�Br 

D
B��vki

B − uA� · �uA − uB�

+ 
T
B�� �vki

B − uA�2

2�Br − 1��TA − TB�

− MB� �vki
B − uA�2

2�Br − 1��uB − uA�2� . �123�

fki
A�0� and fki

B�0� are formulated in the same way as in model
A. gki

B�0� is expanded in the similar way to �110� but to the
fourth order of flow velocity. The formulas for Gk

B can be
obtained through formal replacements in Eqs. �118�–�121�:
�A→�Br=kBTA /mB, Fk

A→Gk
B.

3. Discrete-velocity kinetic model E

Within model E

Qki
AA = −

1

�AA �fki
A − fki

A�0�� −
1

�AB �fki
A − gki

A�0�� , �124�

Qki
BB = −

1

�BB �fki
B − fki

B�0�� −
1

�BA �fki
B − gki

B�0�� , �125�

Qki
AB = −

gki
A�0�

�Ar 

D
A�vki

A − uA� · �uA − uB� + 
T
A� �vki

A − uA�2

2�Ar − 1�
��TA − TB� − MA� �vki

A − uA�2

2�Ar − 1��uA − uB�2� , �126�

Qki
BA = −

gki
B�0�

�B 

D
B��vki

B − uA� · �uA − uB�

+ 
T
B�� �vki

B − uA�2

2�B − 1��TA − TB�

− MB� �vki
B − uA�2

2�B − 1��uB − uA�2� . �127�

fki
A�0�, fki

B�0� are formulated in the same way as in model A.
The formulations of gki

A�0� and gki
B�0� are similar to those in

model D. The requirements on gki
B�0� can be obtained from

those of model D by using formal replacements: uB→uA,
�Br→�B. Then the requirements on gki

A�0� can be obtained
from those on gki

B�0� by using formal replacements: vB→vA,
�B→�Ar=kBTB /mA, gki

B�0�→gki
A�0�.

D. Finite-difference schemes, spurious viscosities
and diffusivities

The time evolution of a discrete-velocity kinetic model
can be solved numerically by using appropriate finite-
difference �FD� scheme. There are various options for calcu-
lating the time derivative and the advection term �17,18,33�.

In a practical simulation the real evolution equation of fki
A

is not Eq. �81� but

�fki
A

�t
+ �

�2

�t2 fki
A + �vki�

A �fki
A

��
+ �vki�

A �2fki
A

��2 �
= �Qki

AA + Qki
AB + aA ·

�vki
A − uA�
�A fki

A�0�� , �128�

where smaller terms in the second and higher orders of �t or
�� have been neglected; the factors � and � can be specified
for various FD schemes. The extra terms in � and � contrib-
ute to the spurious viscosities and diffusivities in the simu-
lation results. To check the spurious viscosities and diffusivi-
ties, one needs to again do the Chapman-Enskog analysis to
Eq. �128� and compare the hydrodynamic equations with
those of the continuous models. The recovered mass and
momentum equations from �128� are

��A

�t
+

�

�r�

��Au�
A� = −

�j�
AB,S

�r�

, �129�

��A

�t
+

�

�r�

��Au�� = −
�

�r�

�j�
AB + j�

AB,S� , �130�

and
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�

�t
��Au�

A� +
�

�r


��Au�
Au


A� +
�P0

A

�r�

− �Aa�
A +

j�
AB

�AB

− � �

�r

�1 − �

�

�t
+ �

�

�r

����


A ,

=��
�

�t
− �

�

�r

�� �

�r


��Au�
Au


A� +
�P0

A

�r


��
�
+ �

�

�t
� j�

AB

�AB − �Aa�
A� , �131�

where

j�
AB,S = − ��

�

�t
− �

�

�r�
���Au�

A� �132�

is the spurious diffusion flux density, � /�r
�� /�r
�=�2 /�r

2 .

The spurious diffusivity and viscosity are coupled in the real
momentum equation �131�. The real momentum equations
for component B and the real energy equations can be con-
sidered in a similar way.

Which FD scheme to use depends on the question under
consideration. Since the higher-order schemes for time de-
rivative require more memory, the forward Euler scheme is
generally used. In binary systems concentration gradients
drive the diffusion behavior. For systems with large density
gradients, the space centered scheme is less stable and the
wiggle phenomena of the second-order upwind, the Lax-
Wendroff and the Beam-Warming schemes introduces un-
physical oscillations of fluid densities �17,18,33�. Therefore,
for such a system, the first-order upwind scheme

�fki
A

��
= �

fki,I
A − fki,I−1

A

��
if vki�

A 	 0,

fki,I
A − fki,I+1

A

− ��
if vki�

A � 0,� �133�

is generally preferred, where the third subscripts I−1, I, I
+1 in Eq. �133� indicate consecutive mesh nodes in the �
direction and �� is the space step. In such a FDLBM
scheme, �=�t /2, �=−�� /2 if vki�

A 	0 and �=�� /2 if
vki�

A �0.
It should be noted that besides the FD schemes and trun-

cation errors of the machine, the numerical errors from the
DVMs also contribute to spurious diffusivities and/or vis-
cosities. The smaller the hydrodynamic velocity, the less this
part of contribution. Other discussions on the origin of spu-
rious velocities and possible remedies are referred to
�9,17,18,33–38�.

IV. NUMERICAL TESTS

As mentioned above, in a practical simulation the numeri-
cal errors have three resources, the formulated DVM, the
spacial discretization and the time discretization. We first
check the case where the spacial FD scheme has no
contribution—the uniform relaxation process where the
physical quantities are only functions of time. For the veloc-

ity equilibration, the five kinetic models give the same ex-
pression,

��u�
A − u�

B�
�t

= −
1

�
� �B

�AB +
�A

�BA��u�
A − u�

B� . �134�

For temperature equilibration, model A gives

��TA − TB�
�t

= −
1

n
� nB

�AB +
nA

�BA��TA − TB� +
�A�B

2kBn�
� 1

�BA −
1

�AB�
��uA − uB�2, �135�

model D gives

FIG. 1. Velocity and temperature equalibrations in uniform re-
laxation processes. The common parameters used in �a� are nA

=1,nB=2, mA=2, mB=1, �AA=�BB=�AB=�BA=1. Additionally,
ux

A�0�=−ux
B�0�=0.3, uy

A�0�=uy
B�0�=0 and T=1 for the isothermal case;

TB=1.2, TA=0.8, uA�0�=uB�0�=0 for the thermal case. The common
parameters used in �b� are nA=nB=1, mA=100, mB=1, �AA=�BB

=�AB=�BA=1, ux
A�0�=−ux

B�0�=0.3, uy
A�0�=uy

B�0�=0. Additionally, T

=1 for the isothermal case; TA�0�=10, TB�0�=0.1 for one and TA�0�

=0.1, TB�0�=10 for the other thermal cases. The second superscript
“�0�” denotes the initial values. Solid lines in the figure possess
corresponding theoretical slopes.
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��TA − TB�
�t

= −
1

n
� nB

�AB +
nA

�BA��TA − TB� +
1

2kBn�

���A�B� 1

�AB −
1

�BA� −
nmB

�BA ��A − �B��
��uA − uB�2, �136�

and model E gives

��TA − TB�
�t

= −
1

n
� nB

�AB +
nA

�BA��TA − TB� +
1

2kBn�

���A�B� 1

�AB −
1

�BA� −
nmB

�BA ��A − �B��
��uA − uB�2. �137�

Numerical examples are shown in Fig. 1. In Fig. 1�a� we
show two cases where �A=�B; in the isothermal case kinetic
models A and B are applied, while in the case of TA	TB

only kinetic model A is applied. Fig. 1�b� shows cases where
�A��B so that models A and B do not work and one has to
resort on models C, D and E. For the velocity equilibration
procedure, under the accuracy of the calculations, models A
and B give the same results, models C, D and E give the
same results. All the numerical results in �a� and �b� agree
well with the theoretical ones.

Secondly, we check a case where the advection terms
make effects and viscosities exist. We use the two-fluid
FDLBMs A and B to investigate the isothermal Couette flow
for single-component fluid. The two walls, locating at y
= ±D /2, start to move horizontally with velocities ±U at t
=0, where D is the distance between the two walls. The
simulation results of the velocity profiles agree well with the
following theoretical one,

u = �y − �
j=1

�

�− 1� j+1�D

j�
exp�−

4j2�2�

�D2 t�sin�2j�

D
y� ,

�138�

where u is the horizontal velocity, �=2U /D the imposed the
shear rate, j an integer. �An example is referred to Fig. 2.�

Thirdly, we investigate the diffusion behavior in a one-
dimensional system. To make valid the relation �77� and
make less the numerical errors from the spacial FD scheme,
we assume that �i� the two components have equal particle
masses 1, �ii� the initial hydrodynamic velocities of the two
components are zero, �iii� the system is isothermal with tem-
perature T=1, �iv� the initial density profiles of the two com-
ponents are

�A = 
1 − �� if x � 0,

1 + �� if x � 0,
� �B = 
1 + �� if x � 0,

1 − �� if x � 0,
�
�139�

where 0����1, and �v� the viscosities of the two compo-
nents are small enough. Thus, the barycentric velocity field
of this system is globally zero, DA=�AB, DB=�BA, and the
evolution of the density profiles follows:

FIG. 2. Horizontal velocity profiles along a vertical line for the
two components at time t=2.9. The symbols denote simulation re-
sults from LBMs A and B. The solid line shows the analytical
result. Parameters used in the simulations are mA=mB=1, TA=TB

=Tup=Tlow=T=1, nA=nB=1, �=0.001. Parameters used in Eq.
�138� are �=0.05, �=1.

FIG. 3. LBM simulation on a diffusion process. A set of density
profiles of component A are shown in �a� and the corresponding
diffusion velocities are shown in �b�. The initial density profiles of
the two components follow Eq. �139� with ��=0.1. All the relax-
ation times are taken to be 2�10−3. The integration steps are �x
=�y=10−4 and �t=10−5. The density profiles from the simulation
�symbols� agree well with the theoretical ones �lines�. The simula-
tion tool for this figure is LBM A.
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�A = 1 + �� erf� x

�4DAt
�, �B = 1 − �� erf� x

�4DBt
� .

�140�

To make the numerical tests practical, when choose param-
eters for simulations, the following points should be consid-
ered: �i� The accuracy of the forward Euler scheme is in the
order of �t and that of the upwind scheme �133� is in the
order of �x; �ii� If the physical values of DA and DB are too
small, they may be submerged by the numerical diffusivities.
Numerical tests show that LBMs A and B can recover den-
sity profiles which agree well with Eq. �140�. An example is
shown in Fig. 3. A set of density profiles for the component
A are shown in �a�. To help evaluate the numerical errors
from the DVM, the corresponding profiles of diffusion ve-
locity uA are shown in �b�. The diffusion velocity uA has its
maximum value at x=0. Its magnitude decreases with time.
For the earliest time �t=0.01� shown in this figure, �uA�
	0.028. The numerical errors for fki

A�0� are in the order of
�uA�4 for LBM B and in the order of �uA�5 for LBM A.

V. CONCLUSIONS AND REMARKS

Sirovich’s original two-fluid BGK kinetic theory works
for symmetric systems where the two components have ap-
proximately the same total masses and local temperatures.
This theory is clarified and generalized to describe both sym-
metric and asymmetric systems. Corresponding to different
situations five kinetic models are formulated. Based on an
octagonal discrete velocity model the five models are dis-
cretized. The discrete-velocity kinetic models and the con-
tinuous ones are required to recover the same Euler and/or
Navier-Stokes equations. A discrete-velocity kinetic model
and an appropriate finite-difference scheme compose a
FDLBM. The formulated kinetic models work also for bi-
nary mixtures with disparate particle-mass components.
Which model to use depends on the mean temperatures and

the mean mass densities of the two components.
In the present two-fluid treatment, the relaxation times of

the cross-collisions contribute to both the viscous and diffu-
sive effects. The interfacial tension is another aspect of ther-
modynamic interaction between component fluids. Investi-
gating the interfacial tension is crucial in the industrial
context for controlling the size and phase stability of me-
chanically dispersed droplets and other transient structures
formed in the course of phase separation. For immiscible
fluids, one way to introduce the interfacial tension is through
modifying the pressure tensors �14� which is implemented by
modifying the force terms in Boltzmann equations �19�. In
such a case, the force terms in the BGK kinetic models are
responsible for the phase separation and interfacial tension.
The acceleration aA is determined by the interparticle inter-
actions and the external field. The determination of the spe-
cific form of aA depends on the system under consideration.
An interesting point is that the incorporation of the force
term in the Boltzmann equation makes no additional require-
ment on the formulation process of the FDLBM. So the spe-
cific forces can be directly considered under the same frame.
A different attempt to introduce the interfacial tension is to
start from the Enskog equations for dense gases �8�.
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